3 H

Nuclide Safety Data Sheet Hydrogen-3 [Tritium]

 3 H

I. PHYSICAL DATA

Radiation: Beta (100% abundance)

Energy: Max.: 18.6 keV; Average: 5.7 keV

Half-Life $[T_{1/2}]$: Physical $T_{1/2}$: 12.3 years

Biological $T_{\frac{1}{2}}$: 10 - 12 days Effective $T_{\frac{1}{2}}$: 10 - 12 days*

* Large liquid intake (3-4 liters/day) reduces effective T_{1/2} by a factor of 2+; ³H is easily

flushed from the body

Specific Activity: 9650 Ci/g [357 TBq/g] max.

Beta Range: Air: 6 mm [0.6 cm; 0.25 inches]

Water: 0.006 mm [0.0006 cm; 3/10,000 inches]

Solids/Tissue: Insignificant [No ³H betas pass through the dead layer of skin]

II. RADIOLOGICAL DATA

Radiotoxicity: Least radiotoxic of all nuclides; CEDE, ingestion or inhalation:

Tritiated water: 1.73E-11 Sv/Bq (0.064 mrem/uCi) of ³H intake Organic Compounds: 4.2E-11 Sv/Bq (0.16 mrem/uCi) of ³H intake

Critical Organ: Body water or tissue

Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption

Radiological Hazard: External Exposure - None from weak ³H beta

Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the only readily available method to assess intake [for tritium, no intake = no dose] Be sure to provide a urine sample to Radiation Safety for confirmatory bioassay whenever your annual ³H use exceeds 8 mCi. If negative, no further bioassay is required unless use exceeds 100 mCi at one time or 1000 mCi in one year, or after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Liquid Scintillation Counting is the only readily available method for detecting ³H NOTE: PORTABLE SURVEY METERS WILL NOT DETECT LABORATORY QUANTITIES OF ³H

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Many tritium compounds readily penetrate gloves and skin; handle such compounds remotely and wear double gloves, changing the outer pair at least every 20 minutes.
- While tritiated DNA precursors are considered more toxic that ³H₂O, they are generally less volatile and hence do not normally present a greater hazard
- The inability of direct-reading instruments to detect tritium and the slight permeability of most material to [tritiated] water & hydrogen [tritium] facilitates undetected spread of contamination. Use extreme care in handling and storage [e.g. sealed double or multiple containment] to avoid contamination, especially with high specific activity compounds.

 ^{14}C

Nuclide Safety Data Sheet Carbon-14

14C

I. PHYSICAL DATA

Radiation: Beta (100% abundance)

Energy: Max.: 156 keV; Average: 49 keV Half-Life $[T_{1/2}]$: Physical $T_{1/2}$: 5730 years

Biological T_{1/2}: 12 days

Effective T_{1/2}: Bound - 12 days; unbound - 40 days

Specific Activity: 4.46 Ci/g [0.165 TBq/g] max.

Beta Range: Air: 24 cm [10 inches]

Water/Tissue: 0.28 mm [0.012 inches]

[~1% of ¹⁴C betas transmitted through dead skin layer, i.e. 0.007 cm depth]

Plastic: 0.25 mm [0.010 inches]

II. RADIOLOGICAL DATA

Radiotoxicity: 0.023 mrem/uCi of ¹⁴CO₂ inhaled;

2.09 mrem/uCi organic compounds inhaled/ingested

Critical Organ: Fat tissue [most labeled compounds]; bone [some labeled carbonates] Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption

Radiological Hazard: External Exposure – None from weak ¹⁴C beta

Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for ¹⁴C, no intake = no dose] Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller [~10% efficiency];

Beta Scintillator [~5% efficiency]

Wipe Test: Liquid Scintillation Counting is the best readily available method for counting ¹⁴C wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Many ¹⁴C compounds readily penetrate gloves and skin; handle such compounds remotely and wear double gloves, changing the outer pair at least every 20 minutes.

 $^{32}\mathbf{P}$

Nuclide Safety Data Sheet Phosphorous-32

 ^{32}P

I. PHYSICAL DATA

Radiation: Beta (100% abundance)

Energy: Maximum: 1,710 keV; Average: 695 keV

Half-Life $[T_{\frac{1}{2}}]$: Physical $T_{\frac{1}{2}}$: 14.29 days

Biological T_{1/2}: Bone ~ 1155 days; Whole Body ~ 257 days¹

Effective $T_{\frac{1}{2}}$: 14.29 days

Specific Activity: 286,500 Ci/g [10,600 TBq/g] max.

Beta Range: Air: 610 cm [240 inches; 20 feet]

Water/Tissue: 0.76 cm [0.33 inches]
Plastic: 0.61 mm [3/8 inches]

II. RADIOLOGICAL DATA

Radiotoxicity²: 94.7 mrem/uCi [Lung] & 15.5 mrem/uCi [CEDE] of ³²P inhaled

29.9 mrem/uCi [Bone Marrow] & 8.77 mrem/uCi [CEDE] of ³²P ingested

Critical Organ: Bone [soluble ³²P]; Lung [Inhalation]; GI Tract [Ingestion - insoluble compounds]

Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption

Radiological Hazard: External Exposure [unshielded dose rate at 1 mCi ³²P vial mouth³: approx. 26

rem/hr], Internal Exposure & Contamination

III. SHIELDING

Shield ³²P with 3/8 inch Plexiglas and monitor for Bremstrahlung; If Bremstrahlung X-rays detected outside Plexiglas, apply 1/8 to 1/4 inch lead [Pb] shielding outside Plexiglas
The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

Wear radiation dosimetry monitoring badges [body & ring] if regularly handling mCi quantities of ³²P

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller

Wipe Test: Liquid Scintillation Counting is an acceptable method for counting ³²P wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake].
- Store ³²P (including waste) behind Plexiglas shielding [3/8 inch thick]; survey (with GM meter) to check adequacy of shielding (accessible dose rate < 2 mR/hr; should be background); apply lead [Pb] shielding outside Plexiglas if needed.
- Use 3/8 inch Plexiglas shielding to minimize exposure while handling ³²P.
- Use tools [e.g. Beta Blocks] to handle ³²P sources and contaminated objects; avoid direct hand contact.
 - Always have a portable survey meter present and turned on when handling ³²P.
- ³²P is not volatile, even when heated, and can be ignored as an airborne contaminant unless aerosolized.

_

¹ NCRP Report No. 65, p.88

² Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122, 156

³ Dupont/NEN, <u>Phosphorous-32 Handling Precautions</u> [Boston, MA; NEN Products, 1985]

⁴ Bevelacqua, J. Contemporary Health Physics [New York; John Wiley & Sons, 1995], p. 282

 35 S

Nuclide Safety Data Sheet Sulfur-35

 35 S

I. PHYSICAL DATA

Radiation: Beta (100% abundance)

Energy: Maximum: 167.47 keV; Average: 48.8 keV

Half-Life $[T_{1/2}]$: Physical $T_{1/2}$: 87.44 days

Biological T_{1/2}: 623 days [unbound ³⁵S]; 90 days [bound ³⁵S]

Effective T_{1/2}: 44 - 76 days [unbound ³⁵S]

Specific Activity: 42,707 Ci/g [1,580 TBq/g] max.

Beta Range: Air: 26 cm [10.2 inches]

Water/Tissue: 0.32 mm [0.015 inches]
Plastic: 0.25 mm [0.010 inches]

II. RADIOLOGICAL DATA

Radiotoxicity¹: 2.48 mrem/uCi [CEDE] of ³⁵S inhaled

0.733 mrem/uCi of 35 ingested

Critical Organ: Testis

Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption

Radiological Hazard: External Exposure – None from weak ³⁵S beta

Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for ³⁵S, no intake = no dose] Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller [~10% efficiency]

Beta Scintillator [~5% efficiency]

Wipe Test: Liquid Scintillation Counting is the best readily available method for counting ³⁵S wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

- Many ³⁵S compounds and metabolites are slightly volatile and may create contamination problems if not sealed or otherwise controlled. This occurs particularly when ³⁵S amino acids are thawed, and when they are added to cell culture media and incubated. Therefore vent thawing ³⁵S vials in a hood. Incubators used with ³⁵S will have an activated charcoal trap placed in the incubator. Possibility of volatilization must be taken into account when surveying after use.

¹ Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122,156

⁴⁵Ca

Nuclide Safety Data Sheet Calcium-45

⁴⁵Ca

I. PHYSICAL DATA

Radiation: Beta (100% abundance)

Energy: Maximum: 257 keV; Average: 77 keV

Half-Life $[T_{\frac{1}{2}}]$: Physical $T_{\frac{1}{2}}$: 162.61 days

Biological T_{1/2}: Bone ~ 18,000 days¹

Effective T_{1/2}: 163 Days

Specific Activity: 17,800 Ci/g [659 TBq/g] max.

Beta Range: Air: 52 cm [20 inches]

Water/Tissue: 0.062 cm [0.024 inches]
Plastic 0.053 cm [0.021 inches]

II. RADIOLOGICAL DATA

Radiotoxicity²: 35.8 mrem/uCi [Lung] & 16.2 mrem/uCi [Bone] of ⁴⁵Ca inhaled

19.4 mrem/uCi [Bone] & 3.2 mrem/uCi [CEDE] of ⁴⁵Ca ingested

Critical Organ: Bone; Lung [Inhalation]

Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption Radiological Hazard: External Exposure - mCi quantities not considered an external hazard

Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake. Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected. No dosimetry badges needed to work with mCi quantities of ⁴⁵Ca.

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller

Wipe Test: Liquid Scintillation Counting works well for counting ⁴⁵Ca wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

¹ "Calcium-45 Handling Precautions", E.I. DuPont de Numours & Co., NEN Products [Boston, MA; 1985]

² Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122, 156

1251

Nuclide Safety Data Sheet lodine-125

125**I**

I. PHYSICAL DATA

Radiation: Gamma - 35.5 keV (7% abundance)

X-ray - 27 keV (113% abundance)

Gamma Constant: 0.27 mR/hr per mCi @ 1.0 meter [7.432E-5 mSv/hr per MBq @ 1.0 meter]¹

Half-Life $[T_{1/2}]$: Physical $T_{1/2}$: 60.14 days

Biological T_{1/2}: 120-138 days (unbound iodine)

Effective $T_{\frac{1}{2}}$: 42 days (unbound iodine)

Specific Activity: 1.73E4 Ci/g [642 TBg/g] max.

II. RADIOLOGICAL DATA

Radiotoxicity²: 3.44E-7 Sv/Bq (1273 mrem/uCi) of ¹²⁵I ingested [Thyroid]

2.16 E-7 Sv/Bq (799 mrem/uCi) of ¹²⁵I inhaled [Thyroid]

Critical Organ: Thyroid Gland

Intake Routes: Ingestion, inhalation, puncture, wound, skin contamination (absorption);

Radiological Hazard: External & Internal Exposure; Contamination

III. SHIELDING

Half Value Layer [HVL] Tenth Value Layer [TVL]

Lead [Pb] 0.02 mm (0.0008 inches) 0.07 mm (0.003 inches)

- The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

- Always wear radiation dosimetry monitoring badges [body & ring] whenever handling > 10 μCi of ¹²⁵I
- Conduct a baseline thyroid scan prior to first use of 1 mCi or more of radioactive iodine
- Conduct thyroid scan no earlier than 6 hours but within 72 hours of handling 1 mCi or more of ¹²⁵I or after any suspected intake

V. DETECTION & MEASUREMENT

Portable Survey Meters:

Geiger-Mueller

Low Energy Gamma Detector [~19% eff. for ¹²⁵I] for contamination surveys

Wipe Test: Liquid Scintillation Counter or Gamma Counter

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Use shielding [lead or leaded Plexiglas] to minimize exposure while handling mCi quantities of 125 I
- Avoid making low pH [acidic] solutions containing ¹²⁵I to avoid volatilization
- For Iodinations:
 - Use a cannula adapter needle to vent stock vials of ¹²⁵I used; this prevents puff releases
 - Cover test tubes used to count or separate fractions from iodinations with parafilm or other tight caps to prevent release while counting or moving outside the fume hood.

¹ Health Physics & Radiological Health Handbook, 3rd Ed. [Baltimore, MD; Williams & Wilkins, 1998] p. 6-11

² Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 136, 166